A Fully Automated Microfluidic Femtosecond Laser Axotomy Platform for Nerve Regeneration Studies in C. elegans
نویسندگان
چکیده
Femtosecond laser nanosurgery has been widely accepted as an axonal injury model, enabling nerve regeneration studies in the small model organism, Caenorhabditis elegans. To overcome the time limitations of manual worm handling techniques, automation and new immobilization technologies must be adopted to improve throughput in these studies. While new microfluidic immobilization techniques have been developed that promise to reduce the time required for axotomies, there is a need for automated procedures to minimize the required amount of human intervention and accelerate the axotomy processes crucial for high-throughput. Here, we report a fully automated microfluidic platform for performing laser axotomies of fluorescently tagged neurons in living Caenorhabditis elegans. The presented automation process reduces the time required to perform axotomies within individual worms to ∼17 s/worm, at least one order of magnitude faster than manual approaches. The full automation is achieved with a unique chip design and an operation sequence that is fully computer controlled and synchronized with efficient and accurate image processing algorithms. The microfluidic device includes a T-shaped architecture and three-dimensional microfluidic interconnects to serially transport, position, and immobilize worms. The image processing algorithms can identify and precisely position axons targeted for ablation. There were no statistically significant differences observed in reconnection probabilities between axotomies carried out with the automated system and those performed manually with anesthetics. The overall success rate of automated axotomies was 67.4±3.2% of the cases (236/350) at an average processing rate of 17.0±2.4 s. This fully automated platform establishes a promising methodology for prospective genome-wide screening of nerve regeneration in C. elegans in a truly high-throughput manner.
منابع مشابه
Microfluidic Platforms for Whole-animal Screening with C. Elegans
This talk will present recent innovations pursued in Ben-Yakar research group towards developing microfluidic platforms and imaging modalities for whole-animal screening using C. elegans. Their small body size and survivability in liquid medium make C. elegans suitable for microfluidic manipulations. Their transparent body is ideal for in vivo optical manipulations such as precise laser axotomy...
متن کاملIn vivo Laser Axotomy in C. elegans
Neurons communicate with other cells via axons and dendrites, slender membrane extensions that contain pre- or post-synaptic specializations. If a neuron is damaged by injury or disease, it may regenerate. Cell-intrinsic and extrinsic factors influence the ability of a neuron to regenerate and restore function. Recently, the nematode C. elegans has emerged as an excellent model organism to iden...
متن کاملHigh-throughput on-chip in vivo neural regeneration studies usingfemtosecond laser nano-surgery and microfluidics
In recent years, the advantages of using small invertebrate animals as model systems for human disease have become increasingly apparent and have resulted in three Nobel Prizes in medicine or chemistry during the last six years for studies conducted on the nematode Caenorhabditis elegans (C. elegans). The availability of a wide array of speciesspecific genetic techniques, along with the transpa...
متن کاملCaenorhabditis elegans neuronal regeneration is influenced by life stage, ephrin signaling, and synaptic branching.
We previously reported functional regeneration of Caenorhabditis elegans motor neurons after femtosecond laser axotomy. We report here that multiple neuronal types can regrow after laser axotomy using a variety of lasers. The precise pattern of regrowth varies with cell type, stage of animal, and position of axotomy. Mechanosensory axons cut in late larval or adult stages displayed extensive re...
متن کاملFemtosecond Laser Axotomy in Caenorhabditis elegans and Collateral Damage Assessment Using a Combination of Linear and Nonlinear Imaging Techniques
In this work highly localized femtosecond laser ablation is used to dissect single axons within a living Caenorhabditis elegans (C. elegans). We present a multimodal imaging methodology for the assessment of the collateral damage induced by the laser. This relies on the observation of the tissues surrounding the targeted region using a combination of different high resolution microscopy modalit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014